Just another WordPress.com site

Analisis Tekstur

Tekstur merupakan karakteristik intrinsik dari suatu citra yang terkait dengan tingkat kekasaran (roughness), granularitas (granulation), dan keteraturan (regularity) susunan struktural piksel. Aspek tekstural dari sebuah citra dapat dimanfaatkan sebagai dasar dari segmentasi, klasifikasi, maupun interpretasi citra.

Tekstur dapat didefinisikan sebagai fungsi dari variasi spasial intensitas piksel (nilai keabuan) dalam citra. Berdasarkan strukturnya, tekstur dapat diklasifikasikan dalam dua golongan :

  • Makrostruktur

Tekstur makrostruktur memiliki perulangan pola lokal secara periodik pada suatu daerah citra, biasanya terdapat pada pola-pola buatan manusia dan cenderung mudah untuk direpresentasikan secara matematis.

  • Mikrostruktur

Pada tekstur mikrostruktur, pola-pola lokal dan perulangan tidak terjadi begitu jelas, sehingga tidak mudah untuk memberikan definisi tekstur yang komprehensif.

Analisis tekstur bekerja dengan mengamati pola ketetanggaan antar piksel dalam domain spasial. Dua persoalan yang seringkali berkaitan dengan analisis tekstur adalah:

  • Ekstraksi ciri

Ekstraksi ciri merupakan langkah awal dalam melakukan klasifikasi dan interpretasi citra. Proses ini berkaitan dengan kuantisasi karakteristik citra ke dalam sekelompok nilai ciri yang sesuai. Dalam praktikum ini kita akan mengamati metoda ekstraksi ciri statistik orde pertama dan kedua, serta mengenali performansi masing-masing skema dalam mengenali citra dengan karakteristik tekstural yang berlainan.

  • Segmentasi citra

Segmentasi citra merupakan proses yang bertujuan untuk memisahkan suatu daerah pada citra dengan daerah lainnya. Berbeda dengan pada citra non-tekstural, segmentasi citra tekstural tidak dapat didasarkan pada intensitas piksel per piksel, tetapi perlu mempertimbangkan perulangan pola dalam suatu wilayah ketetanggaan lokal. Dalam praktikum ini kita akan mencoba menerapkan filter Gabor untuk melakukan segmentasi citra tekstural berdasarkan perulangan pola lokal pada orientasi dan frekuensi tertentu.

1. Ekstraksi Ciri Statistik

Analisis tekstur lazim dimanfaatkan sebagai proses antara untuk melakukan klasifikasi dan interpretasi citra. Suatu proses klasifikasi citra berbasis analisis tekstur pada umumnya membutuhkan tahapan ekstraksi ciri, yang dapat terbagi dalam tiga macam metode berikut:

  • Metode statistik

Metode statistik menggunakan perhitungan statistik distribusi derajat keabuan (histogram) dengan mengukur tingkat kekontrasan, granularitas, dan kekasaran suatu daerah dari hubungan ketetanggaan antar piksel di dalam citra.

Paradigma statistik ini penggunaannya tidak terbatas, sehingga sesuai untuk tekstur-tekstur alami yang tidak terstruktur dari sub pola dan himpunan aturan (mikrostruktur).

  • Metode spektral

Metode spektral berdasarkan pada fungsi autokorelasi suatu daerah atau power distribution pada domain transformasi Fourier dalam mendeteksi periodisitas tekstur.

  • Metode struktural

Analisis dengan metode ini menggunakan deskripsi primitif tekstur dan aturan sintaktik. Metode struktural banyak digunakan untuk pola-pola makrostruktur.

Bagian ini akan membahas metode ekstraksi ciri statistik orde pertama dan kedua. Ekstraksi ciri orde pertama dilakukan melalui histogram citra. Ekstraksi ciri statistik orde kedua dilakukan dengan matriks kookurensi, yaitu suatu matriks antara yang merepresentasikan hubungan ketetanggaan antar piksel dalam citra pada berbagai arah orientasi dan jarak spasial.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s